
F4. Menu Handling
    Menu item events are returned from selections in menus that are either auto-installed at 
launch time, dynamically added by your program (typically using the utility command 
SetItm), or are added via menu controls in ViewIt windows.    The type of event (if any) that is
returned when an item is selected is determined by the menu item type.

Menu Item Types
    Menu item types are differentiated on the basis of whether they are labeled or not, and, if 
labeled, whether they are one of 3 standard item types. This produces 5 distinct types:
1. Unlabeled Program Items    ("Do It")
2. Labeled Program Items    ("Do It#121")
3. Program-Wide Standard Items    ("Hide#108")
4. Shared Standard Items    ("Cut#13")
5. Module-Specific Standard Items ("Combine#1575")
where a "labeled" item is one that contains "#n" in its item text in the MENU resource (n is 
an integer), and "standard" items are ones that have both their appearance and behavior 
automatically controlled by a FaceWare module.
    Most of the standard items described below are already present in our demo program 
MENU resources to illustrate their operation.    ResEdit (or other resource editor) can be used 
to modify these menus and/or add new menus containing any mixture of the five menu item 
types.

• Unlabeled Program Items
    All menu items that do not contain the "#" character in their titles (are not labeled) return 
simple menu events to the main program when selected:
    uMenuID = menu ID of selected menu
    uMenuItem = selected menu item number
    uString = selected menu item text
    uResult = 0
The main program is responsible for maintaining both the appearance and behavior of such 
items.    This is the most common type of new menu item added to program menus since 
these items give the user access to program-specific functionality.

• Labeled Program Items
    Menu items with labels in the range of #121 to #1000 also return control with menu 
events when selected, but return with uResult equal to the label ID:
    uMenuID = menu ID of selected menu
    uMenuItem = selected menu item number
    uString = selected menu item text
    uResult = label ID (121-1000)
A menu item with the title "Do It#121", for example, is processed by ViewIt when the menu 
is loaded.    ViewIt removes the "#121" and stores this information in a private record that 
can later be used to identify and manipulate the item based on its associated label ID.    (See
the "Menu Utilities" topic for further information.)
    The advantages of using such labeled program items versus unlabeled items are that (1) 
code can be written to respond to the value of uResult, making that code independent of the
position of the item in MENU resources, (2) more than one item with the same label ID can 
be present in multiple MENU resources, and (3) the utility command SetItm can be used to 
manipulate all instances of the item at once.
    NOTE:    There is a slight dependence between memory use and the magnitude of the label
ID, so it pays to use label IDs beginning with #121.

• Program-Wide Standard Items
    Standard menu items are labeled items whose appearance and behavior are handled by a 



FaceWare module (i.e., menu events are not returned by such items).    FaceIt supports 
several "program-wide" standard items that have label IDs between 101 and 120:
 About#101 - (see description below)
 Delete...#104 - supports deleting a file
 Transfer...#105 - supports transferring to another app
 Quit#106 - quits program
 Select#107 - first item in list of open windows
 Hide#108 - hides active window
 Send Behind#109 - sends active window behind next
 Send to Back#110 - sends active window to back
 Hide Others#111 - hides all windows except active
 Show All#112 - shows all hidden windows
These program-wide standard items can be added to any menu in the main menu bar, but 
should not be used in menu controls in ViewIt windows.
    The Select standard item defines the position in a menu where FaceIt will build a windows 
list.    Unlike the other standard items, it can only appear in one place, and must be the last 
item in its parent menu (since FaceIt will clobber all items below it when building the 
windows list).
    The About standard item is reset to contain the name of the program file, "About 
[ProgramName]...", when DoInit is executed.    Selection of this item returns a labeled menu 
event to the program (with uString = "About") so that the program can display information 
about itself.    This item differs from other standard items in that it is the only one without 
built-in functionality.

• Shared Standard Items
    Another class of standard menu items are those that are shared by different modules as 
the current context changes (i.e., as the identity of the active window or selected control is 
changed).    These shared standard items have label IDs between 1 and 100:
 Open...#2 - typically opens a file
 Close#4 - typically closes or hides a window†
 Save#5 - typically saves something to disk
 Save As...#6 - typically saves something with new name
 Save Special#7 - typically another way to save
 Revert#8 - typically reverts something from disk
 Page Setup...#9 - typically opens Page Setup dialog
 Print...#10 - typically prints window/control contents
 Print Special#11 - typically another way to print
 Undo#12 - typically undoes last action
 Cut#13 - typically cuts selection (copy + clear)
 Copy#14 - typically copies selection to clipboard
 Copy Special#15 - typically another way to copy
 Paste#16 - typically pastes clipboard to window/control
 Paste Special#17 - typically another way to paste
 Clear#18 - typically clears selection
 Select All#19 - typically selects all in window/control
 Find...#20 - typically supports searching for something
 Next Case#21 - typically finds next case of something
 Go To...#22 - typically jumps to designated place
†see "Closing Windows" in "Windows" topic in ViewIt guide
    A HelpCt editable control and a BaseCt editable control in the same ViewIt window, for 
example, "share" the Copy item in the sense that they take turns controlling this item as the 
user selects one control or the other.
    Which of the shared standard menu items are supported by a module is defined by the 
content of an STR# resource that has the same ID number as the baseID of the module.    
BaseCt (the basic ViewIt control driver), for example, includes an STR# 1310 resource with 



the following strings:
 1. [empty]
 ...
 12. [empty]
 13. Cut
 14. Copy
 15. [empty]
 16. Paste
 17. [empty]
 18. Clear
 19. Select All
which informs FaceIt that BaseCt only supports the Cut, Copy, Paste, Clear, and Select All 
standard items.    This STR# list also defines the default menu text that FaceIt is to set these 
items to when a BaseCt editable control becomes the selected control in a ViewIt window 
(meaning that you would need to translate these strings as well as the MENU resources if 
converting the program to another language).
    Any number of instances of the same shared standard item can be put in any number of 
menus of any type (i.e., you can have the standard Copy item in more than one menu).    All 
such instances of the same standard item will have the same appearance and behavior.

• Module-Specific Standard Items
    These items are standard labeled items that are supported by specific window- or control-
driving modules.    The label number will be equal to the baseID of the module + n where n is
greater than zero.    GrafCt (baseID 1570), for example, supports labels #1571, #1572, etc.    
These standard items are disabled when the current program context is not being managed 
by the associated module.    Otherwise the module will control both the appearance and 
behavior of the item.    The documentation accompanying each module will describe any 
support the module may have for such standard items.

Font/Size/Style/Color Items
    When DoInit is called, ViewIt initializes Font, Size, Style, & Color (FSSC) menus from MENU 
resources 1216-1219 that have menu IDs 196-199, respectively.    These menus are loaded 
by ViewIt as non-main menus and can be attached to hierarchical menu items in any other 
menu.    The items within these menus are similar to standard items since both the 
appearance and behavior of the items in FSSC menus is automatically handled by FaceWare 
modules.
    The style menu in this help window, for example, contains hierarchical menu items that 
are attached to ViewIt's FSSC menus.    In general, you should provide access to the FSSC 
menus whenever editable controls are used that have the "Supports FSSC" option checked in
the Control dialog.

Managing Menu Items
    The utility commands GetItm (get menu item info) and SetItm (set menu item info) can be 
used to get and set menu item characteristics.    These commands replace a large number of
Menu Manager toolbox calls and have the added advantage of recognizing label IDs.    To 
disable all instances of the menu item with label ID #125, for example, you can simply write,
 FaceIt(nil,SetItm,0,125,2,0);
SetItm can also be used to dynamically add/delete entire menus, automatically processing 
any label IDs found in such menus.    See "Menu Utilities" topic for a complete description of 
these important commands.

Custom Standard Items        (Advanced)
    The behavior and appearance of standard items is handled automatically by the module 
associated with the current program context.    The standard items in this window, for 



example, are being controlled by the HelpCt control driver.
    In some cases you may need to modify the behavior of an existing standard item.    Several
options are available.

• Negative Label IDs
    One way to modify the behavior of a standard item is by giving the item a negative label 
ID in the MENU resource.    This causes FaceIt to return control with a menu item event when 
the item is chosen (instead of executing its default behavior).    Changing "Quit#106" to 
"Quit#-106", for example, causes FaceIt to return control with a menu item event when the 
Quit item is chosen:
    uMenuID = menu ID of menu containing Quit
    uMenuItem = item number of the Quit item
    uString = item text of the Quit item (usually "Quit")
    uResult = label ID = 106
If desired, the standard item can then be executed by passing its label ID as a command (as 
described under "Commands" in the "Program Commands" topic):
 FaceIt(nil,106,0,0,0,0); execute Quit
This gives the program a chance to do additional processing before and/or after executing 
the standard item, or to simply replace the standard response with its own.
    Note that the use of a negative label ID has no affect on the item's appearance (i.e., its 
title and enabled state) which is still controlled by the current program context (i.e., by the 
currently selected control).    If you need to control both the item's behavior and its 
appearance, then simply make the item a program menu item.

• Changing Label IDs
    Another way of modifying the behavior of a standard item is to change its label ID as a 
function of the current program context.    You might, for example, be interested in using the 
"Select All" standard item to select the cells in a ListCt control under some circumstances 
but want the standard behavior in others.    The following call would change all instances of 
label ID #19 (= standard "Select All") to #125 (a labeled program item), and thereby give 
control of the item to your program:
 FaceIt(nil,SetItm,0,19,11,125); FaceIt(nil,SetItm,0,19,11,125);
Your program would then respond to selection of this item by selecting all of the cells in the 
list.    To later regain the standard item behavior, simply change label ID #125 back to #19:
 FaceIt(nil,SetItm,0,125,11,19); FaceIt(nil,SetItm,0,125,11,19);

• New Standard Items
    In other cases you may be interested in adding support for standard items that are not 
directly supported by a module.    Suppose, for example, that you wished to add support for 
a standard Print item to print the text in BaseCt's editable text controls.    The first step is to 
make a copy of BaseCt's STR# 1310 and modify it to include a "Print" item:
          #            old STR# --> new STR#
        ...            ...                    ...
          9            [empty]            [empty]
        10            [empty]              Print
        11            [empty]            [empty]
        12            [empty]            [empty]
        13              Cut                    Cut
        ...            ...                    ...
where this modified copy of STR#1310 is best placed in the program's resource file so that it
does not affect programs that are sharing the FaceWare file.
    The presence of the modified STR# will cause FaceIt to enable the Print standard item 
when a BaseCt editable text control is selected.    Selection of the Print item will then send a 
menu event to the BaseCt driver which, since it does not know how to handle this item, will 
then post it back to the main program as a program menu event:
    uMenuID = menu ID of menu containing Print



    uMenuItem = item number of the Print item
    uString = item text of the Print item ("Print")
    uResult = label ID = 10
The program can then print the editable text in the BaseCt control (or do whatever else it 
thinks "Print" should do).

Balloon Help        (System 7)
    System 7 balloon help can be made available for each item in all main and non-main 
menus (including control menus in windows).    The "normal" way of doing this is to use a 
special program called "BalloonWriter" that can be purchased from APDA.    The use of 
BalloonWriter is thought by many to be required due to the complex nature of the special 
hmnu resources that must be created for each MENU that has balloon help associated with 
it.    The truth is that you can use ResEdit to do this if you keep things simple by sticking to a 
single type of help resource text.

The file "hmnu TMPL" contains hmnu 102, STR# 1002, and TMPL 1000 (named "hmnu").    
The presence of the TMPL resource allows ResEdit to edit hmnu resources that are 
associated with help text in STR# resources.    The hmnu's resource ID of 102 means that it 
will be used with the MENU that has menuID 102 (not its resource ID!).    To associate the 
hmnu (or a copy of it) with a different MENU, simply reset its resource ID equal to the 
menuID of the new MENU.    (WARNING:    Do not try to add the TMPL resource to ResEdit 
itself since it cannot be used to edit all types of hmnu resources.    Keep this TMPL in your 
own files for use in editing your own hmnu resources.)

When balloon help is enabled, hmnu resources are used to locate the help text displayed as 
the user moves the cursor over menu items.    This help text can be stored in a variety of 
ways, but, to make it possible for you to use ResEdit, our TMPL only supports the use of 
STR#-based help text (this happens, however, to be one of the best ways to store help text). 
This restriction affects the way in which entries in the hmnu template are used.

The entries in an hmnu resource consist of miscellaneous header info followed by repeating 
blocks that correspond to the menu items:
1. Header info containing "Version", "Options", "ProcID", and "VarCode" - Use the settings in 
our example hmnu.    For more info (don't bother!), see the Help Manager chapter of Inside 
Macintosh Volume 6.
2. Menu Item Blocks -    Following the header are repeating blocks of info corresponding to 
"missing" items, the menu title, and each menu item.    The first block is used for any info 
that's missing from other menu item blocks ("default" help text).    The second block is used 
for the menu's title, and successive blocks are used for the menu's items.    Each block 
defines help text for four different item states:    enabled ("Enb"), disabled ("Dis"), checked 
("Chk"), or marked ("Mrk").    The entries in each block are:

"Help Size" - must set to 20 (= byte size of this block)
"Help Type" - must set to 3 (= STR#-based help)
"Enb STR# ID" = ID of STR# containing help text
"Enb Index" = index into STR# resource
"Dis STR# ID" = ID of STR# containing help text
"Dis Index" = index into STR# resource
"Chk STR# ID" = ID of STR# containing help text
"Chk Index" = index into STR# resource
"Mrk STR# ID" = ID of STR# containing help text
"Mrk Index" = index into STR# resource



For example, hmnu 102 contains just one block (the default or "missing items" block) with 
the help entries 1002, 1, 1002, 2, 1002, 3, 1002, 4.    This means that all items in any menu 
with menuID 102 will have help text from STR# 1002 since only the default block is defined. 
If the menu item is enabled, then the first string from STR# 1002 is used.    If disabled, then 
the second string is used.    If checked, the third is used.    If marked, the fourth is used.    To 
define unique help text for each menu item, a title block and a block for each item would 
have to be added to the hmnu (you can copy and paste entire blocks in ResEdit).    Not all 
entries in a block need to be defined.    To skip an entry, set both its STR# ID and index to 
zero.    If help is ever needed for such an item, the default help will be displayed.    (If you're 
reading the Help Manager chapter in IM6 note that you can't really "skip" an item block in 
the way described in IM6, but setting the STR# ID and index to zero has the same effect.)

The title block operates a little differently from the blocks for other items.    First, its 
"checked" entry is used as help text for the title when the menu has been disabled due to 
the presence of a modal window.    Second, its "marked" entry is used for all items in the 
menu when the menu has been disabled due to a modal window.    Third, if STR# ID and 
index entries are zeroed in the title block, then the default block is not used and the balloon 
doesn't appear.

What To Do:    Copy the resources from the "hmnu TMPL" file into the program file or other 
resource file opened by the program.    Duplicate and renumber the hmnu resource so that 
one hmnu is present for each MENU that will have balloon help.    Expand each hmnu with 
entries that define the source of help text for menu items that will have balloon help.    
Create the associated help text as one or more STR# resources.    Run program under 
System 7 to test.


